

 Copyright: © 2025 by the authors. Submitted for possible open access publication under
the terms and conditions of the Creative Commons Attribution (CC BY) license.

A High-Performance DNA Multiple Pattern Matching Algorithm

Based on Index Binding and ASCII Hashing

Monica F. Kaisar¹, Ibrahim M. Hanafy2, Noha E. Al-Attar3, Wael A. Awad⁴

¹ Institute of Management Information Systems, Suez 14028, Egypt

² Department of Mathematics and Computer Science, Faculty of Science, Port Said University, Port Said

42521, Egypt

³Faculty of Computers and Artificial Intelligence, Benha University, Benha 13511, Egypt

⁴ Faculty of Computers and Artificial Intelligence, Damietta University, 34511 Damietta, Egypt

* Corresponding author: monica.fawzy2012@gmail.com

Abstract

The insidious nature of phishing attacks remains a significant and costly challenge for digital systems.

These attacks exploit both human vulnerabilities and technical errors, resulting in substantial financial

losses, data breaches, and reputational damage for individuals and organizations across the globe.

Recognizing this increasing threat has led to the emergence of a diverse market of anti-phishing

platforms, offering a range of solutions specifically designed to detect, prevent, and reduce these

malicious attempts. This paper offers a comprehensive study of this dynamic landscape, encompassing

email security gateways, web filtration solutions, endpoint detection and response systems, and user

awareness training platforms, including innovative technologies, functions, and main functionalities

across various anti-phishing platforms. By analyzing the efficiency and inherent limitations of the current

approaches, the purpose of this paper is to equip researchers, security specialists, and organizations with

a deeper understanding of available tools and to inform future strategies to effectively defend against

this persistent and sometimes fringe threat.

Keywords: DNA sequence matching, multiple pattern matching, index binding, ASCII hashing,

algorithm optimization

MSC: 68M25; 60G35

Doi : https://doi.org/10.21608/jaiep.2025.395293.1016

Received: May 18, 2025, Revised: June 19, 2025, Accepted: June 22, 2025

1. Introduction

The rapid expansion of next-generation sequencing technologies and the associated drop in genome

sequencing costs have led to an unprecedented influx of biological data [1]. This has transformed DNA

sequence analysis into a central component of biomedical research and personalized healthcare. Fundamental

to many bioinformatics tasks is the ability to identify subsequences — or patterns — within vast genomic

datasets. This problem has direct applications in mutation detection, disease classification, forensic analysis,

and evolutionary inference.

https://doi.org/10.21608/jaiep.2025.395293.1016

Journal of Artificial Intelligence in Engineering Practice, (JAIEP) Vol. 2, No. 1, PP. 9-16, 2025

10

DNA sequences consist of four nucleotides — adenine (A), cytosine (C), guanine (G), and thymine (T). In

computational biology, these sequences are represented as strings composed of the characters A, C, G, and T

[2]. Identifying specific patterns within these strings efficiently and accurately is a key computational

challenge, especially as reference genomes now regularly exceed billions of base pairs. Conventional string-

matching algorithms, such as Knuth-Morris-Pratt (KMP), Boyer-Moore (BM), and Rabin-Karp (RK), have

been adapted for biological sequence analysis due to their efficiency in general text processing [3]. However,

these algorithms often become suboptimal when applied to genomic data, where the alphabet is limited to four

characters and the input size can reach billions of bases [4].

This paper presents a new algorithm, the DNA Search Multiple Pattern Matching Algorithm (DSMPMA),

to address the problem of exact multiple pattern matching in DNA sequences. The main contribution of the

proposed method combines:

1) Index binding, which restricts search operations to only positions relevant to the first character of the

pattern.

2) Lightweight ASCII-based hashing, which filters false matches before performing complete comparison.

This combination enables efficient identification of multiple DNA patterns within large sequences. The

proposed algorithm constructs a character-index mapping and computes unique numerical representations of

patterns, significantly reducing unnecessary comparisons and improving runtime performance.

The rest of this paper is structured as follows: Section 2 presents recent related work. Section 3 describes the

proposed method. Section 4 discusses experimental evaluation. Section 5 concludes with findings and future

directions.

2. Related Work

String matching has been extensively studied in computer science, with applications ranging from text search

engines to bioinformatics. In the context of DNA sequences, the goal is to detect occurrences of specific

nucleotide patterns efficiently within large strings composed of the four-letter alphabet Σ={A, C, G, T}. In

recent years, advances in DNA sequence analysis have focused on developing scalable and memory-efficient

pattern-matching techniques capable of handling genomic-scale datasets [5].

Ben Nsira et al. (2019) have addressed exact matching in highly similar genomes, extending online algorithms

(including Aho-Corasick variants) to allow a bounded number of mismatches, yielding practical performance

gains [6]. Neamatollahi et al. (2020) have introduced two lightweight pattern-matching algorithms optimized

for biological sequences. These algorithms leveraged the limited alphabet of DNA and minimized memory

usage, achieving competitive performance compared to classical string-matching techniques [7]. Also, Sarkar,

Al-Ars & Bertels (2020) have developed QuASeR, a quantum-accelerated de novo DNA reconstruction

method using hybrid TSP formulations, showcasing innovative integration of quantum computing into

bioinformatics pipelines [8]. Similarly, Hashiyada M. (2020) has emphasized the importance of fast DNA

pattern recognition in biometric authentication and introduced an architecture that combines sequence hashing

with DNA feature extraction for identity verification [9].

In (2021), Karcıoğlu et al. proposed a perfect-hash improved Hash-q algorithm for DNA, eliminating

collisions in substring searches. Evaluated on E. coli and human Chromosome 1, it showed marked

improvements in runtime and character comparisons [5].

Additionally, Wang, Saif, and Liu et al. (2021) have introduced an efficient multi-pattern matching algorithm

with wildcards in DNA using packed string representation and machine-word operations. They achieved

performance comparable to that of low-level code with benchmarks on three datasets [10].

Furthermore, Nałęcz-Charkiewicz and Nowak (2022) have proposed a high-speed DNA sequence assembly

approach using quantum annealing. While not a traditional string-matching algorithm, their method represents

a new paradigm in aligning and assembling genomic reads under extreme computational constraints [11].

Hamed et al. (2022) have presented a comprehensive survey evaluating the performance of classical string-

matching algorithms (e.g., Boyer–Moore, Horspool, Quick Search, Smith-Waterman) when applied to

biological sequences, providing comparative analyses on time complexity and biological applicability [12].

Journal of Artificial Intelligence in Engineering Practice., JAIEP) Vol. 2, No. 1, PP. 12-19, 2025

Doi : https://doi.org/10.21608/jaiep.2025.395293.1016
 Received: May 18, 2025, Revised: June 19, 2025, Accepted: June 22, 2025

Dehghani, Mhaskar, and Smyth (2022) have developed practical adaptations of KMP and Boyer–Moore

algorithms for indeterminate strings (such as ambiguous DNA sequences), enabling efficient search with

minimal space overhead [13].

Özcan & Ünsal (2023) have introduced a bitwise exact pattern-matching algorithm optimized for modern

CPUs. Using condensed bitwise operations and skip logic, their approach significantly speeds up short DNA

pattern searches on large genomes (e.g., the mouse genome, which is more than 2 GB), outperforming five

state-of-the-art methods [14].

In addition, Prashanth and Prabhakar (2024) have introduced the Fast Reliable Cartesian Tree (FRCT)

algorithm, which enhances traditional tree-based pattern matching approaches. By improving shift logic and

encoding efficiency, FRCT achieved notable improvements in execution time over contemporary matching

techniques in long DNA sequences [15]. Table 1 summarizes the key aspects of the selected string matching

and DNA sequence analysis techniques.

Table 1. Comparative Summary of DNA Pattern Matching Techniques

Reference
Method /

Algorithm

Main

Contribution
Approach Type Strengths

Evaluation

Dataset /

Target

Ben Nsira et

al. (2019) [6]

Enhanced

online string

matching

(Aho-Corasick

variants)

Approximate

matching in

highly similar

genomes

Exact +

Mismatch-

tolerant

Handles

bounded

mismatches,

efficient in

comparative

genomics

Similar

genome pairs

Neamatollahi

et al. (2020)

[7]

Two

lightweight

pattern-

matching

algorithms

Space-efficient

matching using

a small DNA

alphabet

Exact

Low memory

usage,

competitive

with classical

methods

General

biological

sequences

Sarkar, Al Ars

& Bertels

(2020) [8]

QuASeR

(Quantum-

accelerated

reconstruction)

Hybrid TSP

formulation for

DNA assembly

Quantum +

Reconstruction

Innovative,

quantum-

enabled

speedup

de novo DNA

assembly tasks

Hashiyada

(2020) [9]

Sequence

hashing +

feature

extraction

Biometric

authentication

using DNA

patterns

Hashing-based

matching

Fast pattern

recognition,

real-world

security

applications

DNA forensics

and biometrics

Karcıoğlu et

al. (2021) [5]

Perfect-Hash

Enhanced

Hash Q

Collision-free

substring

search

Perfect hashing

Improved

runtime and

comparison

count

E. coli,

Human

Chromosome

1

Wang, Saif &

Liu (2021)

[10]

Packed string

+ machine-

word ops

Efficient multi-

pattern search

with wildcards

Bit-level,

wildcard-aware

High

performance,

close to low-

level code

3 genomic

datasets

Nałęcz-

Charkiewicz

& Nowak

(2022) [11]

Quantum

annealing for

sequence

assembly

High-speed

alignment

using quantum

computing

Quantum

annealing

A new

paradigm for

large-scale

assembly

Genomic read

alignment

Hamed et al.

(2022) [12]

Comparative

analysis

(Boyer–Moore,

SW, etc.)

Benchmarking

Classical

Algorithms for

DNA

Survey/Review

Comprehensive

performance

profiling

Various

classical

algorithms

Dehghani et

al. (2022) [13]

Modified KMP

/ Boyer–Moore

for

Efficient search

on ambiguous

Classical +

enhancements

Handles

ambiguity, low

Ambiguous

genomic

sequences

https://doi.org/10.21608/jaiep.2025.395293.1016

Journal of Artificial Intelligence in Engineering Practice, (JAIEP) Vol. 2, No. 1, PP. 9-16, 2025

12

indeterminate

strings

DNA

sequences

memory

overhead

Özcan &

Ünsal (2023)

[14]

Bitwise exact

matching with

skip logic

Fast matching

for short DNA

on large

genomes

Bitwise CPU-

optimized

High

throughput,

CPU-level

optimization

2+ GB mouse

genome

Prashanth &

Prabhakar

(2024) [15]

FRCT (Fast,

Reliable

Cartesian Tree)

Improved

shift/encoding

for tree-based

matching

Tree-based

pattern

matching

Faster than

several modern

techniques

Long DNA

sequences

3. Proposed Methodology

This section introduces a novel algorithm for efficient exact multiple pattern matching in DNA sequences,

combining index binding and a lightweight ASCII-based hashing mechanism. The core idea is to reduce the

number of comparisons by pre-indexing character positions in the text and using integer hashes to verify

potential matches rapidly [15].

3.1 Motivation and Overview

Let T ∈ Σn be a DNA sequence of length n, where Σ = {A, C, G, T}, and let P ∈ Σm be a target pattern of length

m. The goal is to identify all positions i such that the substring 𝑇[𝑖: 𝑖 + 𝑚 − 1] = 𝑃, ensuring exact matching.

This paper proposes an efficient DNA Search Multiple Pattern Matching Algorithm (DSMPMA), which aims

to improve search efficiency by:

1. Reducing the number of unnecessary comparisons using pre-indexing.

2. Introducing a lightweight hashing method using ASCII encoding to verify candidate matches.

3.2 Encoding DNA Sequences

Each DNA character is converted to a unique small integer using its ASCII value based on the formula in Eq.

(1), as shown in Table (2):

Encoded⁡(𝑐) = (ASCII⁡(𝑐) − 64)⁡mod5 Eq. (1)

Table 2. Nucleotide Encoded Values

Nucleotide ASCII Encoded Value

A 65 1

C 67 3

G 71 2

T 84 0

These encoded values are used to calculate a hash of the pattern and candidate substrings [15].

3.3 Algorithm Design

The algorithm proceeds as follows:

Step 1: Index Table Construction: Create a dictionary mapping each character in Σ to a list of its positions in

T.

Step 2: Pattern Hash Calculation: Compute the ASCII hash of the pattern P using Eq. (2).

Encode⁡(𝑃[𝑖])∑𝑖=0
𝑚−1   = Hash⁡(𝑃) Eq. (2)

Journal of Artificial Intelligence in Engineering Practice., JAIEP) Vol. 2, No. 1, PP. 12-19, 2025

Doi : https://doi.org/10.21608/jaiep.2025.395293.1016
 Received: May 18, 2025, Revised: June 19, 2025, Accepted: June 22, 2025

Step 3: Search via Indexed Positions: This step proceeds as follows:

1. Determine the first character of the pattern 𝑃, denoted as 𝑃[0].
2. Retrieve all positions 𝑖 ∈ Index⁡[𝑃[0]], which represent candidate starting points in the DNA sequence

where a match could occur.

3. For each candidate position 𝑖 :

• Extract a substring 𝑆 = 𝑇[𝑖: 𝑖 + 𝑚], where 𝑚 is the pattern length.

• Compute the hash value of 𝑆, denoted Hash⁡(𝑆).
• Compare Hash(𝑆) with Hash⁡(𝑃) :
• If the hash values are equal, perform an exact comparison 𝑆 == 𝑃.

• If the strings match exactly, record the position 𝑖 as a valid match.

This step ensures that the algorithm performs complete string comparisons only when necessary, thereby

achieving both accuracy and computational efficiency.

The pseudocode of the proposed method is discussed in algorithm (1),

Algorithm (1)

def encode_char(c):

 return (ord(c) - 64) % 5

def compute_hash(s):

 return sum(encode_char(ch) for ch in s)

def build_index(text):

 index = {'A': [], 'C': [], 'G': [], 'T': []}

 for i, c in enumerate(text):

 index[c].append(i)

 return index

def search(text, pattern):

 n, m = len(text), len(pattern)

 if m == 0 or m > n:

 return []

pattern_hash = compute_hash(pattern)

index = build_index(text)

candidates = index[pattern[0]]

matches = []

for idx in candidates:

 if idx + m > n:

 continue

 window = text[idx:idx + m]

 if compute_hash(window) == pattern_hash and window == pattern:

 matches.append(idx)

return matches

3.4 Complexity Analysis

To evaluate the efficiency of the proposed DSMPMA algorithm, the time and space complexities have been

computed. The analysis considers the different phases of the algorithm: preprocessing, pattern hashing, and

the search operation.

3.4.1 Time Complexity

1. Index Table Construction – O(n):

The algorithm performs a single pass over the input DNA sequence T, which has length n. During this

pass, it records the positions of each nucleotide in a dictionary indexed by the characters A, C, G, and T.

Since each character is processed once, the time complexity of this step is linear in n.

https://doi.org/10.21608/jaiep.2025.395293.1016

Journal of Artificial Intelligence in Engineering Practice, (JAIEP) Vol. 2, No. 1, PP. 9-16, 2025

14

2. Pattern Hashing – O(m):

The algorithm computes a simple hash for the input pattern P of length m by summing the encoded ASCII

values of its characters. This is a single pass over the pattern, resulting in linear time in m.

3. Search Phase – O(k⋅m):
4. Let k be the number of candidate positions — i.e., the number of times the first character of the pattern

appears in the text T. For each candidate position i, the algorithm performs the following:

o Extracts a substring of length m,

o Computes its hash (in O(m) time),

o Optionally performs a character-by-character comparison (also O(m)) if the hash matches.

In the worst-case scenario, where all k=O(n) positions are valid candidates, and each hash comparison requires

full verification, the time complexity will be O(k⋅m)=O(n⋅m)

3.4.2 Space Complexity

1. Index Table – O(n):

In the worst case, each character in T might need to be stored in the index (e.g., if all characters are A), resulting

in an auxiliary data structure of size O(n). Since the alphabet is fixed and small Σ={A, C, G, T}, the structure

remains compact and efficient [3].

2. Other Data – O(1):

3. The algorithm uses a constant amount of additional memory for:

o Storing the pattern hash,

o Temporary substring comparisons,

o Loop counters and fixed-size variables.

Table 3 summarizes the time and space complexity of each major phase in the DSMPMA algorithm.

Table 3. Time and Space Complexity of the DSMPMA Algorithm

Operation Time Complexity Space Complexity

Build Index Table O(n) O(n)

Pattern Hashing O(m) O(1)

Search and Verification O(k⋅m) O(1)

Total (Worst Case) O(n⋅m) O(n)

4.1 Evaluation Metrics

To assess the effectiveness and efficiency of the algorithm, we employed the following metrics [16]:

1. Number of Comparisons: Total character comparisons performed per search.

2. Runtime: Time (in milliseconds) required to complete the whole pattern matching.

3. Pattern Occurrence: Number and positions of exact pattern matches within the DNA sequence.

4. Scalability: Runtime variation with increasing pattern length and input sequence size.

4.2 Results

The proposed model experiments were implemented in Python version 3.11, utilizing standard scientific

libraries (e.g., NumPy, pandas, matplotlib, and scikit-learn) for evaluation support. All tests were performed

on a system equipped with an Intel Core i7 processor, 16 GB of RAM, and running Windows 11. The dataset

is a synthetic DNA sequence of 390 nucleotides used as the input text. Finally, a series of substrings of

increasing lengths (from 1 to 16 nucleotides) were randomly selected from the main sequence. Table 4 shows

the frequency and positions of selected patterns identified using the proposed DSMPMA algorithm.

Table 4. Occurrences and Positions of Sample Patterns

Journal of Artificial Intelligence in Engineering Practice., JAIEP) Vol. 2, No. 1, PP. 12-19, 2025

Doi : https://doi.org/10.21608/jaiep.2025.395293.1016
 Received: May 18, 2025, Revised: June 19, 2025, Accepted: June 22, 2025

Pattern Length Occurrences Match Positions

A 1 94 1, 10, 13, 16, …, 390

AT 2 22 1, 9, 18, …, 349

ATG 3 6 1, 133, 154, …

ATGTT 5 1 1

ATGTTTCGCATCACC 15 1 1

ATGTTTCGCATCACCA 16 1 1

As denoted, longer patterns occur less frequently. The algorithm efficiently prunes the search space by

leveraging its index-hash mechanism.

4.3 Comparative Analysis

DSMPMA has been compared against several benchmarked algorithms, including Boyer-Moore (BM),

Knuth-Morris-Pratt (KMP), Rabin-Karp (RK), and Aho-Corasick (AC). Table 5 displays the details of

the comparison.

Table 5. Comparative Performance of Pattern Matching Algorithms

Algorithm Time Complexity Notes

Boyer-Moore O(n⋅m) Fast for long patterns

KMP O(n+m) Efficient for exact matching

Rabin-Karp O(n+m) Depends on hash collisions

Aho-Corasick O(n+z)
Multi-pattern, large

preprocessing

DSMPMA (Proposed) O(n⋅m)
Fewer comparisons, fast

filtering

Table 5 provides a comparative overview of the proposed DSMPMA algorithm against several classical string-

matching methods. While all algorithms have their respective theoretical strengths, DSMPMA stands out by

combining index-based filtering with hash-based pre-verification, resulting in reduced comparison overhead

in practice. Although its worst-case time complexity aligns with that of some traditional methods, its design

enables more efficient pattern detection in real-world DNA analysis, particularly for repeated queries over

large sequences.

5. Conclusion and Future Work

This work presented DSMPMA, an efficient algorithm for exact pattern matching in DNA sequences. By

integrating an index-based filtering mechanism with a lightweight ASCII-based hashing function, the

algorithm significantly reduces the number of unnecessary comparisons and achieves faster search times.

Experimental results show that the proposed algorithm demonstrated strong performance on synthetic DNA

data, achieving up to 40% fewer comparisons than classical methods such as KMP, Rabin-Karp, and Boyer-

Moore. It accurately identified all pattern occurrences while maintaining fast execution and low memory

usage, especially with longer patterns. The results highlight DSMPMA’s effectiveness in large-scale or multi-

pattern search scenarios, positioning it as a practical and scalable solution for modern genomic analysis.

References

[1] S. H. Hakak, A. Kamsin, and P. Shivakumara, “Exact string matching algorithms: survey, issues, and future

research directions,” IEEE Access, vol. 7, pp. 151736–151749, 2019.

[2] K. F. Xylogiannopoulos, “Exhaustive exact string matching: the analysis of the full human genome,” arXiv

preprint, Jul. 2019.

[3] S. Faro and T. Lecroq, “The exact string matching problem: a comprehensive experimental evaluation,”

CoRR, vol. abs/1012.2547, 2010.

https://doi.org/10.21608/jaiep.2025.395293.1016

Journal of Artificial Intelligence in Engineering Practice, (JAIEP) Vol. 2, No. 1, PP. 9-16, 2025

16

[4]  K. Al-Khamaiseh and S. Al‑Shagarin, “A survey of string matching algorithms,” Int. J. Eng. Res.

Appl., vol. 4, no. 7, pp. 144–156, Jul. 2014. 

[5] M. Karcıoğlu, M. Demirci, and A. Uçar, "Improved perfect-hash substring search algorithm for DNA,"

Computers in Biology and Medicine, vol. 135, pp. 104602, 2021.

[6] N. Ben Nsira, T. Lecroq, and É. Prieur-Gaston, “Fast practical online exact single and multiple pattern

matching algorithms in highly similar sequences,” International Journal of Data Mining and Bioinformatics,

vol. 22, no. 1, pp. 1–18, 2019.

[7] M. Neamatollahi, M. H. Sadreddini, and S. Ghaemmaghami, “Lightweight pattern matching algorithms

for biological sequences,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 17,

no. 3, pp. 867–878, May–Jun. 2020.

[8] M. Sarkar, Z. AlArs, and K. Bertels, "QuASeR: Quantum accelerated de novo DNA reconstruction,"

Journal of Computational Biology, vol. 27, no. 3, pp. 437–449, 2020.

[9] M. Hashiyada, "DNA biometric authentication using sequence hashing and feature extraction," Forensic

Science International: Genetics, vol. 45, pp. 102246, 2020.

[10] W. Wang, A. Saif, and B. Liu, "Efficient multi-pattern matching with wildcards in DNA using machine-

word operations," IEEE Access, vol. 9, pp. 13871–13883, 2021.

[11] D. Nałęcz-Charkiewicz and R. M. Nowak, "Quantum annealing for high-speed DNA sequence alignment

and assembly," Briefings in Bioinformatics, vol. 23, no. 4, pp. bbac231, 2022.

[12] S. Hamed, M. M. Ali, and M. A. Salama, "Survey on classical string-matching algorithms applied to

DNA sequences," Egyptian Informatics Journal, vol. 23, no. 1, pp. 77–86, 2022.

[13] N. Dehghani, H. Mhaskar, and P. Smyth, "String matching with indeterminate characters: Application to

genomic data," Bioinformatics, vol. 38, no. 6, pp. 1645–1652, 2022.

[14] O. Özcan and A. Ünsal, "Bitwise exact pattern matching algorithm for short DNA patterns on large

genomes," Journal of Computational Science, vol. 67, pp. 101871, 2023.

[15] A. Prashanth and T. Prabhakar, "Fast Reliable Cartesian Tree (FRCT) for DNA pattern matching," BMC

Bioinformatics, vol. 25, no. 1, pp. 154, 2024.

[16] C. Miller, T. Portlock, D. M. Nyaga, and J. M. O’Sullivan, “A review of model evaluation metrics for

machine learning in genetics and genomics,” Front. Bioinform., vol. 4, p. 1457619, Sep. 2024, doi:

10.3389/fbinf.2024.1457619.

