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Abstract

The accurate prediction of sonic log data is critical for subsurface characterization and reservoir
management in hydrocarbon exploration. Conventional methods of predicting missing well logs which
often relied on interpolation techniques or empirical correlations are limited in their ability to capture the
complex, nonlinear relationships that exist in subsurface formations. In this study we present a
methodology for predicting a missing log. Three wells from the Zircon field in the Niger-Delta were
used in the study: Well 7, 1, and 6 for training, validation and prediction phases respectively. The results
of the preprocessing steps which involved outlier removal, missing value handling and filtering operation
with Butterworth lowpass filter, were effective in improving the correlation among predictor variables
and target Sonic log. Five models were initially used in the training and validation phases using the Sci-
kit ML module in Python. The RF model was finally selected for the prediction phase having out-
performed other models with a RMSE, MEDAE and R-SQUARED SCORE values of 2.5886us/ft,
1.0380ps/ft, 0.9642 in the testing phase and 6.5588us/ft, 3.6356pus/ft and 0.7695 in the validation phase
respectively. A supplementary qualitative well correlation analysis performed using the training,
validation and prediction wells gave satisfactory results based on similarities in the sonic log character
and trend. The qualitative well correlation provided a crucial geological validation of the model's output.
The findings of this research could significantly reduce the need for extensive well logging operations
and provide a framework for integrating machine learning techniques into petroleum geoscience.
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Introduction

Well logging involves measurement of subsurface characteristics that are inputs in the computation
of petrophysical parameters relevant to hydrocarbon accumulation and producibility such as p-wave
velocity, porosity, permeability, water saturation, shale volume, hydrocarbon saturation etc. Well
logs provide a comprehensive set of data that geoscientists use to make informed decisions about
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reservoir development and management. The productivity of wells in hydrocarbon-bearing
reservoirs depends on petrophysical properties which include lithology, porosity, water saturation,
permeability, and saturation (Eke et al., [6]).

Sonic logs are indispensable for comprehensive reservoir characterization, providing critical data
for porosity calculations, seismic-to-well ties, lithology discrimination, and the determination of
rock mechanical properties (Alfaraj et al. [2]). However, the acquisition of reliable sonic log data is
not always guaranteed and can be frequently compromised or entirely missing owing to several
factors such as operational challenges, faulty instruments, economic constraints, legacy data etc.

Traditional methods of predicting missing well logs have often relied on interpolation techniques or
empirical correlations based on other well logs. While these methods can provide approximate
predictions, they are limited in their ability to capture the complex, nonlinear relationships that exist
in subsurface formations. This is particularly true in regions like the Niger Delta, where geological
complexity and heterogeneity make accurate log prediction challenging.

The intersection of machine learning and geoscience, particularly in the context of sonic log
predictions, has witnessed significant explosion. The advent of machine learning (ML) offers a
transformative approach to this problem. ML's ability to discern patterns and make predictions from
large datasets is particularly suited to the multifaceted nature of geological data (Liu et al. [11];
Kouadio et al. [10]). Several studies have demonstrated the effectiveness of machine learning
models in predicting well logs, particularly in cases where logs are incomplete or missing.

Tectonic and geologic framework of the study area

The study focuses on the Zircon field, located within the Niger Delta petroleum province of Nigeria.
The Niger Delta, situated on the passive continental margin of the Gulf of Guinea in equatorial West
Africa, is one of the world's most prolific hydrocarbon provinces, with intensive exploration and
exploitation activities ongoing since the discovery of commercial oil in 1956 (Doust and Omatsola
[7]). The basin's formation is linked to the Cenozoic development of a large, arcuate delta system
built by the Niger and Benue Rivers, resulting in a thick sedimentary succession reaching up to 12
km?2 This succession is broadly divided into three main diachronous lithostratigraphic units, from
oldest to youngest: the Akata, Agbada, and Benin Formations (Ajacgwu et al., [1]).

The Akata Formation, Paleocene to Recent in age, consists primarily of dark grey, commonly fissile,
marine shales, which are often sandy or silty. Intercalated within these shales are beds of turbidite
sandstones, siltstones, and clays. A key characteristic of the Akata Formation is that it is typically
overpressured, a result of rapid sediment burial by the overlying Agbada Formation, which inhibited
normal dewatering and compaction (Turtle et al., [15]). Overlying the Akata Formation is the Eocene
to Recent Agbada Formation, which is the major petroleum-bearing unit in the Niger Delta
(Ajaegwu et al., [1]). It comprises paralic siliciclastics, representing the main deltaic sequence of
alternating sandstones and shales, deposited in delta-front, delta-topset, and fluvial-deltaic
environments. The youngest unit, the Oligocene to Recent Benin Formation, consists mainly of
continental fluvial sands and gravels, with minor shale intercalations, reaching thicknesses of up to
2,100 meters (Ajaegwu et al., [1]).

The structural style of the Niger Delta is dominated by syn-sedimentary deformation, characterized
by extensive gravity-driven faulting and folding, often facilitated by detachment on under-
compacted, over-pressured shales of the Akata Formation. This has led to the formation of complex
structural and stratigraphic traps, including roll-over anticlines associated with growth faults, fault
closures, and subtle stratigraphic traps (Weber, [17,18]).
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Figure 1: Map of the study area
Materials and Methods
Materials

The dataset for this study comprises well log data from three wells within the Zircon field. For each
well, a suite of conventional logs was available, these include Gamma Ray (GR) in API units, Sonic
log in microseconds per foot (us/ft), Bulk Density (RHOB) in grams per cubic centimeter (g/cm?),
Caliper (CALI) in inches, and Resistivity (LLD9) in Ohm-meter (Q2-m). The distance between Well
1 and Well 6 is 1.10km while the distance between Well 1 and Well 7 is 1.04 km and the distance
between Well 6 and Well 7 is 1.20km

The three wells were partitioned for the machine learning workflow as follows:

Well-7 and Well-1: These wells had a complete suite of logs, including the target sonic log. Data
from these wells were used for training and validating the machine learning models respectively.

Well-6: This well lacked the sonic log and was therefore designated as the prediction or blind test
well, where the optimized ML model would be applied to generate a synthetic sonic log.

A summary of the well log data utilized is presented in Table 1.

Table 1: Summary of available well logs for the study.

Well Available Logs Depth Interval (ft) Purpose
Well-7 GR, SONIC, RHOB, CALI, LLD9 3434.0 - 9926.5 Training
Well-1 GR, SONIC, RHOB, CALI, LLD9 4010.0 -9969.5 Validation
Well-6 GR, RHOB, CALI, (SONIC missing) 4018.5-9918.0 Prediction

The entire data processing, model development, and evaluation workflow were implemented using
the Python programming language. The following key open-source Python libraries were
instrumental:

Doi: https://doi.org/10.21608/jaiep.2025.430788.1027
Received: September 4, 2025; Revised: September 30, 2025; Accepted: October 17, 2025



https://doi.org/10.21608/jaiep.2025.430788.1027

Journal of Artificial Intelligence in Engineering Practice, (JAIEP) Vol 2, No. 2, PP. 83-100, 2025

Pandas: Utilized for efficient data handling, including loading well log data into DataFrame
structures, data manipulation, and initial statistical exploration (McKinney, [12]).

NumPy: Employed for fundamental numerical computations, particularly for operations on arrays
which form the basis of log data handling and ML model inputs (Harris et al., 2020).

Matplotlib and Seaborn: These libraries were used for creating interactive visualizations,
including log plots, histograms for data distribution analysis, boxplots for outlier detection, and
crossplots for examining relationships between different logs (Hunter, [9]; Waskom, [16]).

Scikit-learn (sklearn): This comprehensive machine learning library was the cornerstone for the
ML aspects of the study. It provided tools for data preprocessing, model implementation, and
performance evaluation.

Methodology

The methodology used in this study follows a step-by-step approach for exploratory data analysis,
data preprocessing, model training, validation, and prediction as shown in the diagram below.
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Figure 2: Workflow for the study.
Exploratory Data Analysis (EDA)

EDA was conducted to understand the distribution and relationships among the well logs. EDA in
this study included the following components.

Summary Statistics

Calculation of descriptive statistics (mean, median, standard deviation, minimum, maximum, and
quartiles) for each log curve in all the wells provided a quantitative understanding of the data
distributions, typical value ranges, and potential presence of outliers prior to explicit outlier
treatment. Histograms were also generated to visualize these distributions. A correlation coefficient
was also generated to examine the strength of relationships among the well logs using heatmap.
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Missing value handling

Well log data can often contain missing values or gaps due to various operational and technical
issues like tool failure, cost considerations or sections where logging was not possible. Missing
values can impede reservoir studies and if not properly handled can lead to biased machine learning
models and increase uncertainty in results. Missing values were handled through a combination of
imputation techniques and, in some cases, by removing incomplete records if they were determined
to be non-informative.

Outlier detection and removal

Outliers are data points that significantly deviate from the overall pattern of the data set. They can
distort the results and adversely impact the performance of the models leading to incorrect
interpretations. Boxplots were generated for each input log (GR, RHOB, NPHI, CALI) and the target
log (SONIC) for all the wells to visually identify potential outliers.

The choice of the outlier detection and removal method was informed by the nature of data
distribution as revealed by the histogram plots. The specific method and thresholds for outlier
treatment were chosen on a per-log basis. Three commonly outlier removal methods were used:

Z-Score method
Interquartile Range (IQR)
¢. Quantile method

oe

Z-Score method

Also called Standard score often used for dataset with a normal distribution. A threshold is set for
the upper and lower limits within which the data points are expected to lie. The upper and lower
limit were set as follows:

Upperlimit = X+ 30
(1
Lowerymit = X — 30
@)
Where:
X = Mean of data distribution
o = Standard deviation

Any data outside of this range is considered an outlier and is replaced or capped by the value of
either the upper limit or lower limit.

Inter-quartile range (IQR) method

Normally used for skewed distribution. The IQR is a statistical measure used to assess variability
within a dataset. It divides the data into quartiles, capturing the middle 50% of the observations.
Specifically, it focuses on the range between the first quartile (Q1) and the third quartile (Q3). The
upper and lower boundaries were also set as follows:

Upperiimic = Q3 + 1.5IQR 3)
Lowernjjmir = Q1 — 1.5IQR 4)
Where Q1 and Q3 are the 25th and 75th percentile of the dataset, respectively. IQR represents the inter-
quartile range and is given by Q3—Q1.

Outliers were defined as points falling below the lower limit or above the upper limits. These points
were removed or capped at these boundary values.

The Quantile or Percentile-based approach
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In some cases, particularly for logs with extreme values at the tails such as the LLD9 log, fixed
percentile-based capping was used to mitigate the influence of extreme outliers without excessive
data removal. For this study the commonly used thresholds of 10th percentile (0.1 Quantile) and
90th percentile (0.9 Quantile) were used for the lower and upper limits respectively.

Data filtering

Low-pass filtering is a signal processing technique that allows low-frequency components of a signal
to pass through while attenuating high-frequency components. In other words, it smooths out rapid
variations or noise in the data while preserving the overall trend.

Filtering operation using Butterworth low pass filter was used in removing noise in the well log for
better visualization and interpretability. This was implemented using the Scipy library in Python.
Filter parameters were carefully chosen in other not to over filter the data and remove genuine
geological variations. The filtered logs were validated against the raw logs and geological context
by direct comparison and correlation.

Data normalization

The next preprocessing flow involved log standardization or optimization to remove systematic
errors so that reliable results could be obtained from the machine prediction. This was achieved
using the standardization equation (5) (Codd, [5]) below implemented in the Python programming
language using the StandardScaler() function.

)

Results and Discussions
Summary statistics

All wells cover a significant depth range, generally from around 3400-4000 ft to approximately 9900
ft. This indicates that the wells are exploring a substantial stratigraphic column within the Niger
Delta basin. The summary statistics of the three wells are displayed in tables 2,3 and 4.

Table 2: Summary statistics of training well (Well-7)

STATISTIC DEPTH _ LLD9 RHOB _ SONIC

Count 12986 12960 12939 12960 12939 12939
Mean 6680.25 12.4982 27.0358 2.1604 56.5479 111.8373
STD 1874.4398 1.0339 43.2074 0.1022 23.9306 13.7102
Min 3434 11.3906 0.0696 1.434 26.702 27.8
25% 5057.125 12 1.48825 2.1106 36.375 102.9
50% 6680.25 12.1406 8.0234 2.1497 45.0523 110.9
75% 8303.375 12.3906 31.9575 2.2046 81.3605 120.4
Max 9926.5 21.125 1876.614 2.5701 120.1977 187.2
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Table 3: Summary statistics of validation well (Well-1)

STATISTIC DEPTH _ LLD9 RHOB _ SONIC

Count 11920 11920 11920 11920 11920 11920
Mean 6989.75 12.1416 13.5535 2.2042 58.6579 109.9341
STD 1720.5760 1.5955 14.9909 0.0797 22.2230 12.7340
Min 4010 10.313042 -1.594149 2.06769 26.368276 87.552851
25% 5499.875 10.841853 1.666707 2.139616 39.375248 99.222328
50% 6989.75 11.591681 6.815229 2.186813 52.164395 107.30806
75% 8479.625 13.131713 20.974863 2.256116 77.747725 119.817335
Max 9969.5 17.169679 50.814247 2.389681 105.199425 150.754426

Table 4: Summary statistics of prediction well (Well-6)

STATISTIC DEPTH CAL LLD9 RHOB GR
Count 11793 11793 11793 11793 11793
Mean 6969.898796 12.931096 16.141283 2.175738 58.804504
STD 1702.41542 1.084508 18.881235 0.062719 22.827318
Min 4018.5 11.926034 -3.569161 2.069205 24.317694
25% 5496 12.150969 1.364376 2.129316 37.562266
50% 6970 12.338398 6.176394 2.160316 53.52101
75% 8444 13.450124 28.161993 2.218303 79.376749
Max 9918 15.768325 60.791391 2.333862 102.195299
Resistivity (LLD9)
Well-7

The Mean resistivity value in this well is 27.0358Qm while STD is 43.2074, suggesting a wide range
of resistivities. The Minimum resistivity value of 0.0696Q2m indicates highly conductive zones, likely
shales or water-bearing sands with high salinity. While the maximum value 1876.614Qm indicates
very high resistivity zones. The large range between 25th percentile (1.48825) and 75th percentile
(31.9575) confirms significant lithological and fluid variations.

Well-1

The Mean resistivity value in this well (13.5535Qm) is lower than that of Well-7, suggesting
potentially less resistive overall formations. This well also has a lower STD value (14.9909),
indicating less variability in resistivity. The negative minimum value of -1.594149Qm is physically
impossible, suggesting a bad data point or an outlier. This was removed using the Percentile-based
capping method of outlier removal. The Maximum value of 50.814247 Qm which is significantly
lower than that of Well-7, further supports the idea of fewer or less resistive zones.

Well-6

The Mean resistivity value of 16.141283 Qm which is higher than Well-1 but lower than Well-7,
suggests an intermediate resistivity profile. The STD value (18.881235) is also intermediate,
implying some variability in resistivity. The negative Minimum value -3.569161 Qm also suggests a
bad data point or an outlier. The Maximum resistivity value of 60.791391 Qm which is higher than
Well-1 but still significantly lower than Well-7, suggests some resistive zones intermediate between
Well-7 and Well-1
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Bulk density (RHOB)

Reflects formation density, typically lower in porous sands and higher in shales and denser
lithologies.

Well-7

The Mean RHOB value of (2.1604g/cm?) and STD value of (0.1022) indicate a relatively consistent
density range. While the Minimum (1.434g/cm?) and Maximum (2.5701g/cm?) suggest presence of
very porous sands (low density) and denser formations/shales (high density). The range suggests a
good mix of sand and shales.

Well-1

The Mean RHOB value (2.2042g/cm?) in this well is slightly higher than Well-7, suggesting a slightly
denser overall formation, possibly more shales or compacted sands while the STD value of 0.0797 is
lower than Well-7, indicating less variation in density. The Minimum (2.06769g/cm?) and Maximum
(2.389681g/cm?) show a narrower range, confirming less variability in density, potentially less
extreme porosity variations compared to Well-7.

Well-6

The Mean RHOB value (2.175738g/cm?) in this well is intermediate between Well-7 and Well-1.
While the STD value (0.062719) is the lowest among the three wells, indicating the most consistent
density profile, implying less variation in porosity and lithology. The Minimum (2.069205g/cm?)
and Maximum (2.333862¢g/cm?) values show the narrowest range, reinforcing the idea of less
variability in density.

Gamma ray (GR)

Gamma ray readings reflect the shale content in the formation. Higher values (>50API) indicate clay-
rich or shale formations, while lower values (<50 API) suggest cleaner, non-radioactive formations
like sandstones.

Well-7

The Mean gamma value of 56.5479API and STD value of 23.9306 indicate a mix of shales and sands.
While the Minimum value (26.702 API) suggests clean sand intervals the Maximum (120.1977API)
indicates radioactive shales. The 25th percentile (36.375API) and 75th percentile (81.3605API)
provide a good bracket for typical sand and shale values.

Well-1

The Mean gamma value of 58.6579API is slightly higher than that of Well-7, implying a slightly
higher shale content on average. However, the STD value (22.2230) is similar, indicating a similar
mix of sands and shales. The Minimum (26.368276) and Maximum (105.199425) are comparable to
Well-7, confirming the presence of clean sands and shales.

Well-6

The Mean gamma value (58.804504API) is the highest among the three wells, suggesting the highest
overall shale content. STD (22.827318) is similar to the other wells, indicating the presence of both
sands and shales. The Minimum gamma value of 24.317694API is the lowest, indicating some very
clean sand intervals. While the Maximum (102.195299API) is comparable, indicating shales.

SONIC

Measures the time it takes for a sound wave to travel through a formation, inversely related to
velocity. Higher transit time (lower velocity) indicates more porous or less consolidated formations
(sands), while lower transit time (higher velocity) indicates denser formations (shales).

Well-7
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The Mean value of 111.8373 us/ft and STD value of 13.7102 ps/ft show a moderate range. While the
Minimum sonic value of 27.8 ps/ft is unusually low, possibly indicating a very dense or fast
formation, or a data outlier/tool issue. This value is quite anomalous for typical Niger Delta
sediments, which usually have sonic values well above 50-60 pus/ft.

The Maximum value of 187.2 pus/ft indicates very porous or unconsolidated intervals, typical of loose
sands.

Well-1

The Mean Sonic value (109.9341 ps/ft) in this well is comparable to Well-7. While the STD
(12.7340) is slightly lower than Well 1, indicating slightly less variability in porosity/consolidation.
The Minimum sonic value of 87.552851 us/ft is more realistic than that of Well-7's minimum,
suggesting no extreme dense layers or data issues. While the Maximum value of 150.754426 us/ft
which is also lower than that of Well-7 maximum, imply less extremely porous or unconsolidated
zones.

In summary, the geophysical log statistics are broadly consistent with the geological characteristics
of'a well in the Niger Delta, indicating a promising mix of potential reservoir sands and sealing shales,
characteristic of a prolific hydrocarbon province.
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Figure 3: Histogram plot of training well (Well-7)
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Figure 5: Histogram plot of prediction well (Well-6)

The histograms graphically reinforce the quantitative summary statistics, providing a visual
confirmation of the lithological mix across the three wells in the study area. A remarkable feature
of the histograms is the bimodal distribution of the gamma ray with distinct peaks. The two distinct
peaks suggest the alternation between cleaner, non-radioactive formations like sandstones (lower
gamma ray values) and shale-rich or clay-rich formations (higher gamma ray values). While SONIC
and RHOB appear to be normally distributed with no significant outliers LLD9 shows strong peaks
at low resistivity with significant outliers.

Preprocessing

The data preprocessing phase successfully addressed missing values and outliers. The Z-score
method of outlier removal was effective in removing outliers in the CALIPER and SONIC logs. For
the extreme values in LLD9 the IQR method gave good results while the percentile-based method
showed effectiveness in removing the outliers in RHOB. This resulted in a clean dataset for model
training (Figs 6a and 6b) and also an increased correlation of the different well logs feature with the
target feature as revealed in the values extracted from the heatmap (table 4). Similarly,
improvements were also observed in the log data after the smoothing operation (Figure 7) thus
enhancing the interpretability of the well logs.
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Figure 6: Box plot of training well (Well-7) (a) Before training (b) After training
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Table 5: Absolute correlation of features and target (Sonic log) before and after preprocessing extracted from
heatmap

Logs DEPTH LLD9 RHOB GR CAL

Correlation (Before preprocessing) 0.496 0.307 0.230 0.213

Correlation (After preprocessing) 0.601 0.447 0.235 0.222
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Figure 7: Result of filtering operation (a) Before filtering (b) After filtering
Model training

The five candidate models were all used during the training after the train/ test split of the training
data. The hyperparameters of each model were set to the default values. The training was done by
initializing and calling the model.fit() method in the scki-kit learn library.

The Random Forest model consistently demonstrated superior performance across all three-
evaluation metrics (RMSE, MAE, and R?), indicating its better capability to generalize and
accurately predict sonic log values for this dataset. The performance metrics are summarized in table
6. While the scatter plots of test versus predicted sonic values are shown in Figs 8a, 8b, 8c, 8d and
8e.

Table 6: Model test performance evaluation values. Random Forest Regressor showed the lowest RMSE,
MEDAE and the highest R?, indicating a strong fit to the data

Model RMSE MEDAE R2 Score

Gradient Boost Regresssor 5.3604 2.2420 0.8467
Decision Tree 3.3879 1.3000 0.9388
Random Forest 2.5886 1.0380 0.9642
Linear Regression 7.9931 2.9053 0.6591
K-Nearest Neighbour 3.9097 1.6600 0.9184

Doi: https://doi.org/10.21608/jaiep.2025.430788.1027
Received: September 4, 2025; Revised: September 30, 2025; Accepted: October 17, 2025



https://doi.org/10.21608/jaiep.2025.430788.1027

Journal of Artificial Intelligence in Engineering Practice, (JAIEP) Vol 2, No. 2, PP. 83-100, 2025

The superior performance of the Random Forest model could be attributed to its ensemble nature,
which combines the predictions of many individual decision trees. This architecture allows it to
effectively capture complex, non-linear relationships between the input logs (GR, RHOB, NPHI,
CALI) and the sonic log (Bi et al., [4]). While single Decision Trees can model non-linearity, they
are prone to overfitting. Random Forest mitigates the problem of overfitting by averaging
predictions from decorrelated trees in a process known as aggregating or “bagging”, leading to better
generalization (Ashby et al., [3]). KNN being non-parametric can also capture non-linearity but
might be less robust with the given feature set or dimensionality. GBR also performed well, as
expected from a powerful ensemble method, but Random Forest showed a slight edge in this specific
evaluation.

To further understand the Random Forest model's behavior, feature importance scores were
extracted. These scores indicate the relative contribution of each input feature to the prediction of
the sonic log. Table 7 presents the feature importances obtained from the trained RF model. The
ranking of the features or predictors shows that depth is the most important predictor. This is as
expected as the speed at which acoustic waves travel through the surface is fundamentally influenced
by depth as it is generally known that compaction and cementation change often in direct proportion
with depth which decreases porosity and hence lowers transit time of acoustic waves between
different formations in the subsurface. This is also reflected in the general trends of the sonic log
signatures in the three wells. However, it is important to note that the predictors selected in this study
should not necessarily be generalized to be the most important features for predicting sonic log data
using machine learning algorithms since access to more log measurements or features could provide
more predictors.

Table 7: Feature importances from the trained model
Feature (Input Log) | DEPTH | CAL GR LLD9 RHOB

Importance Score 0.9376 | 0.0248 | 0.0217 | 0.0080 | 0.0079

Compared to other studies, the accuracy achieved is competitive. For instance, some studies report
correlation coefficients (related to R?) for sonic log prediction using ensemble models in the range
of 0.89 to 0.896 and RMSEs between 5.85 and 6.03 ps/ft (Saleh, [13]). Other works using drilling
parameters and GR with XGBoost reported average absolute percentage errors of less than 10%
(Alfaraj et al. [2]). The performance of the RF model in this study falls within these favorable ranges.

Model validation

The models were further subjected to validation by using each of the models to predict sonic from a
known well (Well-1). Cross plots between the actual sonic from this well and the predicted sonic
by the models are as shown in figs 9a-9e.

The core result of the comparative model validation evaluation is presented in Table 8. With an
RMSE of 6.5588, an MAE of 3.6356, and an R? of 0.7695, the Random Forest regressor continues
its superior performance over the others.

Table 8: Model validation error metrics using the validation well. The Random Forest Regressor model
maintained its high-performance during validation, with only minor deviations in the blind well

ML MODEL RMSE MEDAE R? SCORE

Random Forest 6.5588 3.6356 0.7695 (76.95%)
Linear Regression 7.0074 3.6384 0.6972 (69.72%)
Gradient Boosting 7.2509 4.0958 0.6757 (67.57%)
KNN 7.8721 4.4687 0.6679 (66.79%)
Decision Tree 7.9359 3.8115 0.6116 (61.16%)
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Model prediction

Following its superior performance on the test and validation sets, the trained Random Forest model
was applied to Well-3, the designated prediction well which originally lacked a sonic log. The model
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used the available GR, RHOB, NPHI, and CALI logs from Well-3 as input to generate a continuous
predicted sonic log (PREDICTED_SONIC) over the logged interval. Figure 10 shows the input log
alongside the newly predicted sonic log.
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HT—H I I FE ] T
=
MRS SEaE —— ==l L
5000 1| L= sanmnil — = ot
= - —] L
= — - 1
= g= !
6000 | i :‘} 1| T= E)
— ]
=TT = — —
5 = L E:
7000 - / 1| 4= | I
m——==c — s
H = F o
8000 1| 2 F
EPE== =
;:Eﬁ_-- 5 r =
= Jl
= {
9000 :Er‘;%f' LA p
=— 5
= = 1 =
b
Ir T T T I‘ T I I I T T T T T T T T T T T T
2 13 14 15 0 20 40 60 21 22 23 4 60 8D 100 80 100 120 140

Figure 10: The predicted sonic of well 6 done using the Random Forest Regressor

Qualitative Well Correlation

To assess the geological significance and practical utility of the predicted sonic log beyond statistical
metrics, a qualitative well correlation was performed. This involved visually comparing the
predicted sonic log from Well-6 with the actual sonic logs from the nearby training and validation
wells (Well-7 and Well-1). The wells are situated approximately 1 km apart, a distance over which
significant geological markers and formation trends are often correlatable in deltaic settings like the
Niger Delta (Ajaegwu [1]).

Based on visual inspection, the logs exhibited similar trends and pattern with a general decrease in
sonic values from sand to shale corresponding to expected lithological changes (higher transit time
indicates more porous or less consolidated formations (sands), while lower transit time indicates
denser formations (shale). Also as identified on the GR section, the logs showed similarity in facies
variations at almost equal depth intervals across the three wells from sand at the top (= 3000-55001t)
to shale-sand intercalations at the middle (= 5500-77501t) to predominantly shale facie at the bottom
(= 7750-9920ft). This visual consistency suggests that the Random Forest model successfully
learned geologically meaningful relationships from the input data, capturing underlying formation
properties that exhibit lateral continuity. This step is crucial because a high R? score alone does not
guarantee a geologically sensible prediction; the qualitative correlation acts as an essential
geoscience-based validation (Hesthammer and Fossen, [8]).
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Figure 11: A supplementary QC of the predictive model using qualitative well correlation analysis among

the three wells showing satisfactory results

CONCLUSIONS

Prediction well (Well 6)

This research successfully developed and evaluated a machine learning framework for predicting

compressional sonic logs (SONIC) in the Zircon field, Niger Delta, Nigeria.
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A comprehensive data preprocessing workflow, which included missing value imputation and
outlier treatment using Z-score, IQR, and quantile-based approaches, was established to prepare
high-quality well log data (Gamma Ray, Density, Resistivity, Caliper) from three wells.

Among five machine learning algorithms tested (Random Forest, Linear Regression, Decision Tree,
Gradient Boost Regressor, and K-Nearest Neighbors), the Random Forest (RF) model demonstrated
superior performance on the test data and an unseen validation well. It achieved an RMSE of
2.5886us/ft, an MAE of 1.0380ps/ft, and an R-Squared value of 0.9642, and 6.5588us/ft,
3.6356ps/ft and 0.7695 for RMSE, MEDAE and R-Squared values in the validation phase indicating
a strong predictive capability.

The optimized RF model, when applied to a well lacking an original sonic log, generated a predicted
sonic curve that showed remarkable similarity in log trends and patterns when qualitatively
correlated with actual sonic logs from two contiguous wells approximately 1 km away. This
confirmed the geological plausibility and practical utility of the predicted log.

Recommendations

The most critical recommendation is to expand the training dataset by including data from a
significantly larger and more diverse set of wells from the Zircon field and, if possible, analogous
fields within the Niger Delta and using multiple wells for both training and validation. Also there is
a need to investigate the potential of more advanced ML algorithms, particularly deep learning
models such as Long Short-Term Memory (LSTM) [14] networks or Convolutional Neural
Networks (CNNs) (Saleh et al., [13]). These models are designed to capture sequential dependencies
or spatial patterns in data, which could be advantageous for well log data if a sufficiently large
dataset becomes available. Also, a cross-validation (k-fold) should be implemented to maximize the
use of the limited data, this will help provide a more robust assessment of model stability before
validation. Finally, future studies should explore the integration of complementary data sources,
such as seismic attributes (which provide spatial context between wells), core data (for direct
calibration of log responses to rock properties), or real-time drilling parameters (Alfaraj et al. [2]),
which have shown promise in predicting logs.
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