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Abstract 

The accurate prediction of sonic log data is critical for subsurface characterization and reservoir 

management in hydrocarbon exploration. Conventional methods of predicting missing well logs which 

often relied on interpolation techniques or empirical correlations are limited in their ability to capture the 

complex, nonlinear relationships that exist in subsurface formations. In this study we present a 

methodology for predicting a missing log. Three wells from the Zircon field in the Niger-Delta were 

used in the study: Well 7, 1, and 6 for training, validation and prediction phases respectively. The results 

of the preprocessing steps which involved outlier removal, missing value handling and filtering operation 

with Butterworth lowpass filter, were effective in improving the correlation among predictor variables 

and target Sonic log. Five models were initially used in the training and validation phases using the Sci-

kit ML module in Python. The RF model was finally selected for the prediction phase having out-

performed other models with a RMSE, MEDAE and R-SQUARED SCORE values of 2.5886µs/ft, 

1.0380µs/ft, 0.9642 in the testing phase and 6.5588µs/ft, 3.6356µs/ft and 0.7695 in the validation phase 

respectively. A supplementary qualitative well correlation analysis performed using the training, 

validation and prediction wells gave satisfactory results based on similarities in the sonic log character 

and trend. The qualitative well correlation provided a crucial geological validation of the model's output. 

The findings of this research could significantly reduce the need for extensive well logging operations 

and provide a framework for integrating machine learning techniques into petroleum geoscience. 
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Introduction 

Well logging involves measurement of subsurface characteristics that are inputs in the computation 

of petrophysical parameters relevant to hydrocarbon accumulation and producibility such as p-wave 

velocity, porosity, permeability, water saturation, shale volume, hydrocarbon saturation etc. Well 

logs provide a comprehensive set of data that geoscientists use to make informed decisions about 
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reservoir development and management. The productivity of wells in hydrocarbon-bearing 

reservoirs depends on petrophysical properties which include lithology, porosity, water saturation, 

permeability, and saturation (Eke et al., [6]).  

Sonic logs are indispensable for comprehensive reservoir characterization, providing critical data 

for porosity calculations, seismic-to-well ties, lithology discrimination, and the determination of 

rock mechanical properties (Alfaraj et al. [2]). However, the acquisition of reliable sonic log data is 

not always guaranteed and can be frequently compromised or entirely missing owing to several 

factors such as operational challenges, faulty instruments, economic constraints, legacy data etc. 

Traditional methods of predicting missing well logs have often relied on interpolation techniques or 

empirical correlations based on other well logs. While these methods can provide approximate 

predictions, they are limited in their ability to capture the complex, nonlinear relationships that exist 

in subsurface formations. This is particularly true in regions like the Niger Delta, where geological 

complexity and heterogeneity make accurate log prediction challenging. 

The intersection of machine learning and geoscience, particularly in the context of sonic log 

predictions, has witnessed significant explosion. The advent of machine learning (ML) offers a 

transformative approach to this problem. ML's ability to discern patterns and make predictions from 

large datasets is particularly suited to the multifaceted nature of geological data (Liu et al. [11]; 

Kouadio et al. [10]). Several studies have demonstrated the effectiveness of machine learning 

models in predicting well logs, particularly in cases where logs are incomplete or missing.  

Tectonic and geologic framework of the study area 

The study focuses on the Zircon field, located within the Niger Delta petroleum province of Nigeria. 

The Niger Delta, situated on the passive continental margin of the Gulf of Guinea in equatorial West 

Africa, is one of the world's most prolific hydrocarbon provinces, with intensive exploration and 

exploitation activities ongoing since the discovery of commercial oil in 1956 (Doust and Omatsola 

[7]). The basin's formation is linked to the Cenozoic development of a large, arcuate delta system 

built by the Niger and Benue Rivers, resulting in a thick sedimentary succession reaching up to 12 

km2 This succession is broadly divided into three main diachronous lithostratigraphic units, from 

oldest to youngest: the Akata, Agbada, and Benin Formations (Ajaegwu et al., [1]). 

The Akata Formation, Paleocene to Recent in age, consists primarily of dark grey, commonly fissile, 

marine shales, which are often sandy or silty. Intercalated within these shales are beds of turbidite 

sandstones, siltstones, and clays. A key characteristic of the Akata Formation is that it is typically 

overpressured, a result of rapid sediment burial by the overlying Agbada Formation, which inhibited 

normal dewatering and compaction (Turtle et al., [15]). Overlying the Akata Formation is the Eocene 

to Recent Agbada Formation, which is the major petroleum-bearing unit in the Niger Delta 

(Ajaegwu et al., [1]). It comprises paralic siliciclastics, representing the main deltaic sequence of 

alternating sandstones and shales, deposited in delta-front, delta-topset, and fluvial-deltaic 

environments. The youngest unit, the Oligocene to Recent Benin Formation, consists mainly of 

continental fluvial sands and gravels, with minor shale intercalations, reaching thicknesses of up to 

2,100 meters (Ajaegwu et al., [1]). 

The structural style of the Niger Delta is dominated by syn-sedimentary deformation, characterized 

by extensive gravity-driven faulting and folding, often facilitated by detachment on under-

compacted, over-pressured shales of the Akata Formation. This has led to the formation of complex 

structural and stratigraphic traps, including roll-over anticlines associated with growth faults, fault 

closures, and subtle stratigraphic traps (Weber, [17,18]).  
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Figure 1: Map of the study area 

Materials and Methods 

Materials  

The dataset for this study comprises well log data from three wells within the Zircon field. For each 

well, a suite of conventional logs was available, these include Gamma Ray (GR) in API units, Sonic 

log in microseconds per foot (µs/ft), Bulk Density (RHOB) in grams per cubic centimeter (g/cm³), 

Caliper (CALI) in inches, and Resistivity (LLD9) in Ohm-meter (Ω-m). The distance between Well 

1 and Well 6 is 1.10km while the distance between Well 1 and Well 7 is 1.04 km and the distance 

between Well 6 and Well 7 is 1.20km 

The three wells were partitioned for the machine learning workflow as follows: 

Well-7 and Well-1: These wells had a complete suite of logs, including the target sonic log. Data 

from these wells were used for training and validating the machine learning models respectively. 

Well-6: This well lacked the sonic log and was therefore designated as the prediction or blind test 

well, where the optimized ML model would be applied to generate a synthetic sonic log. 

A summary of the well log data utilized is presented in Table 1. 

 

Table 1: Summary of available well logs for the study. 

Well Available Logs Depth Interval (ft) Purpose 

Well-7 GR, SONIC, RHOB, CALI, LLD9 3434.0 - 9926.5 Training 

Well-1 GR, SONIC, RHOB, CALI, LLD9 4010.0 -9969.5 Validation 

Well-6 GR, RHOB, CALI, (SONIC missing) 4018.5 -9918.0 Prediction 

 

The entire data processing, model development, and evaluation workflow were implemented using 

the Python programming language. The following key open-source Python libraries were 

instrumental: 
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Pandas: Utilized for efficient data handling, including loading well log data into DataFrame 

structures, data manipulation, and initial statistical exploration (McKinney, [12]). 

NumPy: Employed for fundamental numerical computations, particularly for operations on arrays 

which form the basis of log data handling and ML model inputs (Harris et al., 2020). 

Matplotlib and Seaborn: These libraries were used for creating interactive visualizations, 

including log plots, histograms for data distribution analysis, boxplots for outlier detection, and 

crossplots for examining relationships between different logs (Hunter, [9]; Waskom, [16]). 

Scikit-learn (sklearn): This comprehensive machine learning library was the cornerstone for the 

ML aspects of the study. It provided tools for data preprocessing, model implementation, and 

performance evaluation. 

Methodology 

The methodology used in this study follows a step-by-step approach for exploratory data analysis, 

data preprocessing, model training, validation, and prediction as shown in the diagram below. 

 

 

Figure 2: Workflow for the study. 

Exploratory Data Analysis (EDA) 

EDA was conducted to understand the distribution and relationships among the well logs.  EDA in 

this study included the following components. 

Summary Statistics 

Calculation of descriptive statistics (mean, median, standard deviation, minimum, maximum, and 

quartiles) for each log curve in all the wells provided a quantitative understanding of the data 

distributions, typical value ranges, and potential presence of outliers prior to explicit outlier 

treatment. Histograms were also generated to visualize these distributions. A correlation coefficient 

was also generated to examine the strength of relationships among the well logs using heatmap.  
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Missing value handling 

Well log data can often contain missing values or gaps due to various operational and technical 

issues like tool failure, cost considerations or sections where logging was not possible. Missing 

values can impede reservoir studies and if not properly handled can lead to biased machine learning 

models and increase uncertainty in results. Missing values were handled through a combination of 

imputation techniques and, in some cases, by removing incomplete records if they were determined 

to be non-informative. 

Outlier detection and removal 

Outliers are data points that significantly deviate from the overall pattern of the data set. They can 

distort the results and adversely impact the performance of the models leading to incorrect 

interpretations. Boxplots were generated for each input log (GR, RHOB, NPHI, CALI) and the target 

log (SONIC) for all the wells to visually identify potential outliers. 

The choice of the outlier detection and removal method was informed by the nature of data 

distribution as revealed by the histogram plots. The specific method and thresholds for outlier 

treatment were chosen on a per-log basis. Three commonly outlier removal methods were used:  

a. Z-Score method 

b. Interquartile Range (IQR) 

c. Quantile method 

Z-Score method 

Also called Standard score often used for dataset with a normal distribution.  A threshold is set for 

the upper and lower limits within which the data points are expected to lie. The upper and lower 

limit were set as follows:  

𝑈𝑝𝑝𝑒𝑟𝑙𝑖𝑚𝑖𝑡 =  𝑥̅ + 3𝜎          

 (1) 

𝐿𝑜𝑤𝑒𝑟𝑙𝑖𝑚𝑖𝑡 =  𝑥̅ − 3𝜎          

 (2) 

Where: 

𝑥̅ = Mean of data distribution 

𝜎 = Standard deviation 

Any data outside of this range is considered an outlier and is replaced or capped by the value of 

either the upper limit or lower limit. 

Inter-quartile range (IQR) method 

Normally used for skewed distribution. The IQR is a statistical measure used to assess variability 

within a dataset. It divides the data into quartiles, capturing the middle 50% of the observations. 

Specifically, it focuses on the range between the first quartile (Q1) and the third quartile (Q3). The 

upper and lower boundaries were also set as follows: 

𝑈𝑝𝑝𝑒𝑟𝑙𝑖𝑚𝑖𝑡 = 𝑄3 + 1.5𝐼𝑄𝑅          (3) 

𝐿𝑜𝑤𝑒𝑟𝑙𝑖𝑚𝑖𝑡 = 𝑄1 − 1.5𝐼𝑄𝑅          (4) 

Where Q1 and Q3 are the 25th and 75th percentile of the dataset, respectively. IQR represents the inter-

quartile range and is given by Q3−Q1. 

Outliers were defined as points falling below the lower limit or above the upper limits. These points 

were removed or capped at these boundary values. 

The Quantile or Percentile-based approach 
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In some cases, particularly for logs with extreme values at the tails such as the LLD9 log, fixed 

percentile-based capping was used to mitigate the influence of extreme outliers without excessive 

data removal. For this study the commonly used thresholds of 10th percentile (0.1 Quantile) and 

90th percentile (0.9 Quantile) were used for the lower and upper limits respectively.  

Data filtering 

Low-pass filtering is a signal processing technique that allows low-frequency components of a signal 

to pass through while attenuating high-frequency components. In other words, it smooths out rapid 

variations or noise in the data while preserving the overall trend. 

Filtering operation using Butterworth low pass filter was used in removing noise in the well log for 

better visualization and interpretability.  This was implemented using the Scipy library in Python. 

Filter parameters were carefully chosen in other not to over filter the data and remove genuine 

geological variations. The filtered logs were validated against the raw logs and geological context 

by direct comparison and correlation. 

Data normalization 

The next preprocessing flow involved log standardization or optimization to remove systematic 

errors so that reliable results could be obtained from the machine prediction. This was achieved 

using the standardization equation (5) (Codd, [5]) below implemented in the Python programming 

language using the StandardScaler() function.  

  𝑧 =  
𝑥𝑖− 𝑥̅

𝜎
            (5) 

Results and Discussions 
Summary statistics 

All wells cover a significant depth range, generally from around 3400-4000 ft to approximately 9900 

ft. This indicates that the wells are exploring a substantial stratigraphic column within the Niger 

Delta basin. The summary statistics of the three wells are displayed in tables 2,3 and 4.   
Table 2: Summary statistics of training well (Well-7) 

STATISTIC DEPTH CAL LLD9 RHOB GR SONIC 

Count 12986 12960 12939 12960 12939 12939 

Mean 6680.25 12.4982 27.0358 2.1604 56.5479 111.8373 

STD 1874.4398 1.0339 43.2074 0.1022 23.9306 13.7102 

Min 3434 11.3906 0.0696 1.434 26.702 27.8 

25% 5057.125 12 1.48825 2.1106 36.375 102.9 

50% 6680.25 12.1406 8.0234 2.1497 45.0523 110.9 

75% 8303.375 12.3906 31.9575 2.2046 81.3605 120.4 

Max 9926.5 21.125 1876.614 2.5701 120.1977 187.2 
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Table 3: Summary statistics of validation well (Well-1) 

STATISTIC DEPTH CAL LLD9 RHOB GR SONIC 

Count 11920 11920 11920 11920 11920 11920 

Mean 6989.75 12.1416 13.5535 2.2042 58.6579 109.9341 

STD 1720.5760 1.5955 14.9909 0.0797 22.2230 12.7340 

Min 4010 10.313042 -1.594149 2.06769 26.368276 87.552851 

25% 5499.875 10.841853 1.666707 2.139616 39.375248 99.222328 

50% 6989.75 11.591681 6.815229 2.186813 52.164395 107.30806 

75% 8479.625 13.131713 20.974863 2.256116 77.747725 119.817335 

Max 9969.5 17.169679 50.814247 2.389681 105.199425 150.754426 

Table 4: Summary statistics of prediction well (Well-6) 

STATISTIC DEPTH CAL LLD9 RHOB GR 

Count 11793 11793 11793 11793 11793 

Mean 6969.898796 12.931096 16.141283 2.175738 58.804504 

STD 1702.41542 1.084508 18.881235 0.062719 22.827318 

Min 4018.5 11.926034 -3.569161 2.069205 24.317694 

25% 5496 12.150969 1.364376 2.129316 37.562266 

50% 6970 12.338398 6.176394 2.160316 53.52101 

75% 8444 13.450124 28.161993 2.218303 79.376749 

Max 9918 15.768325 60.791391 2.333862 102.195299 

 

Resistivity (LLD9) 

Well-7 

The Mean resistivity value in this well is 27.0358Ωm while STD is 43.2074, suggesting a wide range 

of resistivities. The Minimum resistivity value of 0.0696Ωm indicates highly conductive zones, likely 

shales or water-bearing sands with high salinity. While the maximum value 1876.614Ωm indicates 

very high resistivity zones. The large range between 25th percentile (1.48825) and 75th percentile 

(31.9575) confirms significant lithological and fluid variations. 

Well-1 

The Mean resistivity value in this well (13.5535Ωm) is lower than that of Well-7, suggesting 

potentially less resistive overall formations. This well also has a lower STD value (14.9909), 

indicating less variability in resistivity. The negative minimum value of -1.594149Ωm is physically 

impossible, suggesting a bad data point or an outlier. This was removed using the Percentile-based 

capping method of outlier removal. The Maximum value of 50.814247 Ωm which is significantly 

lower than that of Well-7, further supports the idea of fewer or less resistive zones. 

Well-6  

The Mean resistivity value of 16.141283 Ωm which is higher than Well-1 but lower than Well-7, 

suggests an intermediate resistivity profile.  The STD value (18.881235) is also intermediate, 

implying some variability in resistivity. The negative Minimum value -3.569161 Ωm also suggests a 

bad data point or an outlier. The Maximum resistivity value of 60.791391 Ωm which is higher than 

Well-1 but still significantly lower than Well-7, suggests some resistive zones intermediate between 

Well-7 and Well-1 
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Bulk density (RHOB) 

Reflects formation density, typically lower in porous sands and higher in shales and denser 

lithologies.  

Well-7 

The Mean RHOB value of (2.1604g/cm3) and STD value of (0.1022) indicate a relatively consistent 

density range. While the Minimum (1.434g/cm3) and Maximum (2.5701g/cm3) suggest presence of 

very porous sands (low density) and denser formations/shales (high density). The range suggests a 

good mix of sand and shales. 

Well-1 

The Mean RHOB value (2.2042g/cm3) in this well is slightly higher than Well-7, suggesting a slightly 

denser overall formation, possibly more shales or compacted sands while the STD value of 0.0797 is 

lower than Well-7, indicating less variation in density. The Minimum (2.06769g/cm3) and Maximum 

(2.389681g/cm3) show a narrower range, confirming less variability in density, potentially less 

extreme porosity variations compared to Well-7. 

Well-6 

 The Mean RHOB value (2.175738g/cm3) in this well is intermediate between Well-7 and Well-1. 

While the STD value (0.062719) is the lowest among the three wells, indicating the most consistent 

density profile, implying less variation in porosity and lithology.  The Minimum (2.069205g/cm3) 

and Maximum (2.333862g/cm3) values show the narrowest range, reinforcing the idea of less 

variability in density. 

Gamma ray (GR) 

Gamma ray readings reflect the shale content in the formation. Higher values (>50API) indicate clay-

rich or shale formations, while lower values (<50 API) suggest cleaner, non-radioactive formations 

like sandstones. 

Well-7 

The Mean gamma value of 56.5479API and STD value of 23.9306 indicate a mix of shales and sands. 

While the Minimum value (26.702 API) suggests clean sand intervals the Maximum (120.1977API) 

indicates radioactive shales. The 25th percentile (36.375API) and 75th percentile (81.3605API) 

provide a good bracket for typical sand and shale values. 

Well-1 

The Mean gamma value of 58.6579API is slightly higher than that of Well-7, implying a slightly 

higher shale content on average. However, the STD value (22.2230) is similar, indicating a similar 

mix of sands and shales. The Minimum (26.368276) and Maximum (105.199425) are comparable to 

Well-7, confirming the presence of clean sands and shales. 

Well-6 

The Mean gamma value (58.804504API) is the highest among the three wells, suggesting the highest 

overall shale content. STD (22.827318) is similar to the other wells, indicating the presence of both 

sands and shales. The Minimum gamma value of 24.317694API is the lowest, indicating some very 

clean sand intervals. While the Maximum (102.195299API) is comparable, indicating shales. 

SONIC  

Measures the time it takes for a sound wave to travel through a formation, inversely related to 

velocity. Higher transit time (lower velocity) indicates more porous or less consolidated formations 

(sands), while lower transit time (higher velocity) indicates denser formations (shales). 

Well-7  
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The Mean value of 111.8373 µs/ft and STD value of 13.7102 µs/ft show a moderate range. While the 

Minimum sonic value of 27.8 µs/ft is unusually low, possibly indicating a very dense or fast 

formation, or a data outlier/tool issue. This value is quite anomalous for typical Niger Delta 

sediments, which usually have sonic values well above 50-60 µs/ft.  

The Maximum value of 187.2 µs/ft indicates very porous or unconsolidated intervals, typical of loose 

sands.  

Well-1 

The Mean Sonic value (109.9341 µs/ft) in this well is comparable to Well-7. While the STD 

(12.7340) is slightly lower than Well 1, indicating slightly less variability in porosity/consolidation.  

The Minimum sonic value of 87.552851 µs/ft is more realistic than that of Well-7's minimum, 

suggesting no extreme dense layers or data issues. While the Maximum value of 150.754426 µs/ft 

which is also lower than that of Well-7 maximum, imply less extremely porous or unconsolidated 

zones. 

In summary, the geophysical log statistics are broadly consistent with the geological characteristics 

of a well in the Niger Delta, indicating a promising mix of potential reservoir sands and sealing shales, 

characteristic of a prolific hydrocarbon province. 

 

 

Figure 3: Histogram plot of training well (Well-7) 

 

Figure 4: Histogram plot of validation well (Well-1) 
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Figure 5: Histogram plot of prediction well (Well-6) 

The histograms graphically reinforce the quantitative summary statistics, providing a visual 

confirmation of the lithological mix across the three wells in the study area. A remarkable feature 

of the histograms is the bimodal distribution of the gamma ray with distinct peaks. The two distinct 

peaks suggest the alternation between cleaner, non-radioactive formations like sandstones (lower 

gamma ray values) and shale-rich or clay-rich formations (higher gamma ray values). While SONIC 

and RHOB appear to be normally distributed with no significant outliers LLD9 shows strong peaks 

at low resistivity with significant outliers. 

Preprocessing  

The data preprocessing phase successfully addressed missing values and outliers. The Z-score 

method of outlier removal was effective in removing outliers in the CALIPER and SONIC logs. For 

the extreme values in LLD9 the IQR method gave good results while the percentile-based method 

showed effectiveness in removing the outliers in RHOB. This resulted in a clean dataset for model 

training (Figs 6a and 6b) and also an increased correlation of the different well logs feature with the 

target feature as revealed in the values extracted from the heatmap (table 4). Similarly, 

improvements were also observed in the log data after the smoothing operation (Figure 7) thus 

enhancing the interpretability of the well logs. 

 

 
Figure 6: Box plot of training well (Well-7) (a) Before training (b) After training 
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Table 5: Absolute correlation of features and target (Sonic log) before and after preprocessing extracted from 

heatmap 

Logs DEPTH LLD9 RHOB GR CAL 

Correlation (Before preprocessing) 0.775 0.496 0.307 0.230 0.213 

Correlation (After preprocessing) 0.782 0.601 0.447 0.235 0.222 

 

Figure 7: Result of filtering operation (a) Before filtering (b) After filtering 

Model training  

The five candidate models were all used during the training after the train/ test split of the training 

data. The hyperparameters of each model were set to the default values. The training was done by 

initializing and calling the model.fit() method in the scki-kit learn library.  

The Random Forest model consistently demonstrated superior performance across all three-

evaluation metrics (RMSE, MAE, and R²), indicating its better capability to generalize and 

accurately predict sonic log values for this dataset. The performance metrics are summarized in table 

6. While the scatter plots of test versus predicted sonic values are shown in Figs 8a, 8b, 8c, 8d and 

8e. 

Table 6: Model test performance evaluation values. Random Forest Regressor showed the lowest RMSE, 
MEDAE and the highest R², indicating a strong fit to the data 

Model RMSE MEDAE R2 Score 

Gradient Boost Regresssor 5.3604 2.2420 0.8467 

Decision Tree 3.3879 1.3000 0.9388 

Random Forest 2.5886 1.0380 0.9642 

Linear Regression 7.9931 2.9053 0.6591 

K-Nearest Neighbour 3.9097 1.6600 0.9184 

a 

b 
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The superior performance of the Random Forest model could be attributed to its ensemble nature, 

which combines the predictions of many individual decision trees. This architecture allows it to 

effectively capture complex, non-linear relationships between the input logs (GR, RHOB, NPHI, 

CALI) and the sonic log (Bi et al., [4]). While single Decision Trees can model non-linearity, they 

are prone to overfitting. Random Forest mitigates the problem of overfitting by averaging 

predictions from decorrelated trees in a process known as aggregating or “bagging”, leading to better 

generalization (Ashby et al., [3]). KNN being non-parametric can also capture non-linearity but 

might be less robust with the given feature set or dimensionality.  GBR also performed well, as 

expected from a powerful ensemble method, but Random Forest showed a slight edge in this specific 

evaluation. 

To further understand the Random Forest model's behavior, feature importance scores were 

extracted. These scores indicate the relative contribution of each input feature to the prediction of 

the sonic log. Table 7 presents the feature importances obtained from the trained RF model. The 

ranking of the features or predictors shows that depth is the most important predictor. This is as 

expected as the speed at which acoustic waves travel through the surface is fundamentally influenced 

by depth as it is generally known that compaction and cementation change often in direct proportion 

with depth which decreases porosity and hence lowers transit time of acoustic waves between 

different formations in the subsurface. This is also reflected in the general trends of the sonic log 

signatures in the three wells. However, it is important to note that the predictors selected in this study 

should not necessarily be generalized to be the most important features for predicting sonic log data 

using machine learning algorithms since access to more log measurements or features could provide 

more predictors. 

Table 7: Feature importances from the trained model 

Feature (Input Log) DEPTH CAL GR LLD9 RHOB 

Importance Score 0.9376 0.0248 0.0217 0.0080 0.0079 

Compared to other studies, the accuracy achieved is competitive. For instance, some studies report 

correlation coefficients (related to R²) for sonic log prediction using ensemble models in the range 

of 0.89 to 0.896 and RMSEs between 5.85 and 6.03 µs/ft (Saleh, [13]). Other works using drilling 

parameters and GR with XGBoost reported average absolute percentage errors of less than 10% 

(Alfaraj et al. [2]). The performance of the RF model in this study falls within these favorable ranges. 

Model validation 

The models were further subjected to validation by using each of the models to predict sonic from a 

known well (Well-1).  Cross plots between the actual sonic from this well and the predicted sonic 

by the models are as shown in figs 9a-9e.  

The core result of the comparative model validation evaluation is presented in Table 8. With an 

RMSE of 6.5588, an MAE of 3.6356, and an R² of 0.7695, the Random Forest regressor continues 

its superior performance over the others. 

Table 8: Model validation error metrics using the validation well. The Random Forest Regressor model 
maintained its high-performance during validation, with only minor deviations in the blind well 

ML MODEL RMSE MEDAE R² SCORE 

Random Forest 6.5588 3.6356 0.7695 (76.95%) 

Linear Regression 7.0074 3.6384 0.6972 (69.72%) 

Gradient Boosting 7.2509 4.0958 0.6757 (67.57%) 

KNN 7.8721 4.4687 0.6679 (66.79%) 

Decision Tree 7.9359 3.8115 0.6116 (61.16%) 
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a 
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c d 
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Figure 8: Scatter plots of test vs predicted sonic logs (a) Random Forest (b) KNN (c) Gradient boost (d)Linear 

regression (e) Decision tree 
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Figure 9: Scatter plots of test vs predicted sonic logs after validation (a) Random Forest (b) Linear Regression (c) 

Gradient Boost Regressor (d) K-Nearest Neighbour (e) Decision Tree 

Model prediction 

Following its superior performance on the test and validation sets, the trained Random Forest model 

was applied to Well-3, the designated prediction well which originally lacked a sonic log. The model 

a b 

c  d  

e  
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used the available GR, RHOB, NPHI, and CALI logs from Well-3 as input to generate a continuous 

predicted sonic log (PREDICTED_SONIC) over the logged interval. Figure 10 shows the input log 

alongside the newly predicted sonic log. 

 

 

Qualitative Well Correlation 

To assess the geological significance and practical utility of the predicted sonic log beyond statistical 

metrics, a qualitative well correlation was performed. This involved visually comparing the 

predicted sonic log from Well-6 with the actual sonic logs from the nearby training and validation 

wells (Well-7 and Well-1). The wells are situated approximately 1 km apart, a distance over which 

significant geological markers and formation trends are often correlatable in deltaic settings like the 

Niger Delta (Ajaegwu [1]).  

 

Based on visual inspection, the logs exhibited similar trends and pattern with a general decrease in 

sonic values from sand to shale corresponding to expected lithological changes (higher transit time 

indicates more porous or less consolidated formations (sands), while lower transit time indicates 

denser formations (shale). Also as identified on the GR section, the logs showed similarity in facies 

variations at almost equal depth intervals across the three wells from sand at the top (≈ 3000-5500ft) 

to shale-sand intercalations at the middle (≈ 5500-7750ft) to predominantly shale facie at the bottom 

(≈ 7750-9920ft). This visual consistency suggests that the Random Forest model successfully 

learned geologically meaningful relationships from the input data, capturing underlying formation 

properties that exhibit lateral continuity. This step is crucial because a high R² score alone does not 

guarantee a geologically sensible prediction; the qualitative correlation acts as an essential 

geoscience-based validation (Hesthammer and Fossen, [8]).  

 

Figure 10: The predicted sonic of well 6 done using the Random Forest Regressor 
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CONCLUSIONS  

This research successfully developed and evaluated a machine learning framework for predicting 

compressional sonic logs (SONIC) in the Zircon field, Niger Delta, Nigeria. 

a  

Training well (Well 7) 

 

b  

Validation well (Well 1) 

 

c  

Prediction well (Well 6) 

Figure 11: A supplementary QC of the predictive model using qualitative well correlation analysis among 

the three wells showing satisfactory results 
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A comprehensive data preprocessing workflow, which included missing value imputation and 

outlier treatment using Z-score, IQR, and quantile-based approaches, was established to prepare 

high-quality well log data (Gamma Ray, Density, Resistivity, Caliper) from three wells. 

Among five machine learning algorithms tested (Random Forest, Linear Regression, Decision Tree, 

Gradient Boost Regressor, and K-Nearest Neighbors), the Random Forest (RF) model demonstrated 

superior performance on the test data and an unseen validation well. It achieved an RMSE of 

2.5886µs/ft, an MAE of 1.0380µs/ft, and an R-Squared value of 0.9642, and 6.5588µs/ft, 

3.6356µs/ft and 0.7695 for RMSE, MEDAE and R-Squared values in the validation phase indicating 

a strong predictive capability.  

The optimized RF model, when applied to a well lacking an original sonic log, generated a predicted 

sonic curve that showed remarkable similarity in log trends and patterns when qualitatively 

correlated with actual sonic logs from two contiguous wells approximately 1 km away. This 

confirmed the geological plausibility and practical utility of the predicted log. 

Recommendations  

The most critical recommendation is to expand the training dataset by including data from a 

significantly larger and more diverse set of wells from the Zircon field and, if possible, analogous 

fields within the Niger Delta and using multiple wells for both training and validation. Also there is 

a need to investigate the potential of more advanced ML algorithms, particularly deep learning 

models such as Long Short-Term Memory (LSTM) [14] networks or Convolutional Neural 

Networks (CNNs) (Saleh et al., [13]). These models are designed to capture sequential dependencies 

or spatial patterns in data, which could be advantageous for well log data if a sufficiently large 

dataset becomes available. Also, a cross-validation (k-fold) should be implemented to maximize the 

use of the limited data, this will help provide a more robust assessment of model stability before 

validation. Finally, future studies should explore the integration of complementary data sources, 

such as seismic attributes (which provide spatial context between wells), core data (for direct 

calibration of log responses to rock properties), or real-time drilling parameters (Alfaraj et al. [2]), 

which have shown promise in predicting logs.  
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